Extremely light weight rheocast components for automotive space frame

M.Rosso1, I.Peter1, G.Chiarmetta2, I.Gattelli3

1Department of Applied Science and Technology, Politecnico di Torino
2Consultant – Torino, Italy
3ATS – Lugo Ravenna, Italy

12th International Conference on Semi-Solid Processing of Alloys and Composites
Cape Town, 8-11 October 2012
Outline

_folder_icon_ Quality & reliability, good opportunities
_folder_icon_ Rheocasting … go on … in collaboration with ATS Company…Aims
_folder_icon_ Some new outcomes after S2P 2010
_folder_icon_ Final remarks

12th International Conference on Semi-Solid Processing of Alloys and Composites
Cape Town, 8-11 October 2012
Casting Defects, quality and reliability

- Alloys and their properties
- Molds/dies and their properties
- Process kind and parameters

Final properties
In-service behavior

Filling
Solidification
Solid State Phenomena
Interactions Alloy-Mould

Microstructure
Defects - Imperfections

12th International Conference on Semi-Solid Processing of Alloys and Composites
Cape Town, 8-11 October 2012
ATS Company: development of an innovative rheocasting process

The semi-solid forming system at ATS employs a vertical press. Under the inferior level of the press a carousel with suitable containers set up at 120° turns to successive working positions:

1. After feeding, the molten alloy is cooled and stirred to slurry;
2. The slurry is injected into the die cavity and the residual biscuit is evacuated;
3. The container is lubricated and it is ready and waiting from the ladle new quantity of liquid.

12th International Conference on Semi-Solid Processing of Alloys and Composites
Cape Town, 8-11 October 2012
Real industrial need to obtain high performance components in competitive way

Aim of the research

To optimize the new process through the investigation of the properties of the produced component:

1. Simple shape
2. More complex shape

????

Technological transfer
A 356 alloy: Si 6.964; Fe 0.111; Cu 0.002; Mn 0.002; Mg 0.411; Zn 0.003; Ti 0.133; Al bal.

T5 TT: water quenching, ageing at 165°C, 6 h;
T6 TT: 520°C, 6 h, water quenching and ageing at 165°C, 6 h.

1.-Radiography observation;

2.-Morphological and compositional analysis: OM, SEM and EDS;

3.-Evolution of the mechanical properties: Brinell hardness, three point bending test, impact test, tensile test.

4.-Fracture surface analysis: SEM.
Real cases study

• To produce enhanced performance Al-based alloys components for critical areas;

• To investigate some series of samples machined directly from components:

1. **structural parts in A356 alloy**, after T5 and T6 TT;
2. **automotive components in B356.2** after T5 and T6 tempers and **B357.2** alloys after T5 TT.

Flanges for truss: relatively heterogeneous geometry, massive corner junctions, connected by slim rib arms

Automotive space frame Component

quite complex shape

12th International Conference on Semi-Solid Processing of Alloys and Composites
Cape Town, 8-11 October 2012
Morphological and mechanical characterization

The achieved results revealed superior level of mechanical strength for the components and appear very similar to those obtained by forged components.

Study of other significant areas to get additional indication on the quality of the production process

12th International Conference on Semi-Solid Processing of Alloys and Composites
Cape Town, 8-11 October 2012
Morphological analysis

Sample 1
Sample 2
Sample 3
Sample 4
Weldability

Welding procedure: TIG
Filler material: Al-based Peraluman 5083 alloy
(↓ Si and ↑ Mg content than the base Me)

The welding has been realized successfully

12th International Conference on Semi-Solid Processing of Alloys and Composites
Cape Town, 8-11 October 2012
The fracture has been verified external to the welding zone
Two series of samples: thicker ones, obtained as a suitable appendix from the feeding zone (labelled as A) and thinner ones, machined from the component (labelled as T) have been considered, to evaluate possible differences.
Similar microstructures, showing moderately homogeneous \(\alpha \) phase. T6 heat treatment consents to reach a thermodynamically more stable and globular Si particles.
Mechanical properties

<table>
<thead>
<tr>
<th>Sample</th>
<th>Thick A: 356</th>
<th>Thin T: 356</th>
<th>A: 357</th>
<th>T: 357</th>
</tr>
</thead>
<tbody>
<tr>
<td>Heat treat.</td>
<td>T5</td>
<td>T6</td>
<td>T5</td>
<td>T6</td>
</tr>
<tr>
<td>σ₀.₂ [MPa]</td>
<td>132</td>
<td>190</td>
<td>140</td>
<td>200</td>
</tr>
<tr>
<td>UTS [MPa]</td>
<td>220</td>
<td>260</td>
<td>240</td>
<td>280</td>
</tr>
<tr>
<td>Elongation %</td>
<td>3</td>
<td>6</td>
<td>4</td>
<td>7</td>
</tr>
</tbody>
</table>

A slightly higher performances on the thin samples (T)

Brinell hardness results:

T5 condition: 68 HB

T6 condition: 90 HB - ↑ hardness due to a finer and more globular microstructure compared to T5 heat treatment condition.

12th International Conference on Semi-Solid Processing of Alloys and Composites
Cape Town, 8-11 October 2012
Further case study for automotive application
Quite massive component (more than 3kg), with complex shape and highly stressed.
A357 alloy, T6 treated, zero defects detected at the radiographic control.

Morphological Analysis

OM microstructure

12th International Conference on Semi-Solid Processing of Alloys and Composites
Cape Town, 8-11 October 2012
A lot of 12, at least, tensile test samples machined from the components, has produced very interesting properties.

<table>
<thead>
<tr>
<th>Sample</th>
<th>Previous T (thin): 356</th>
<th>This case A 357</th>
<th>Die cast A 357 Expected strength values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Heat treat.</td>
<td>T6</td>
<td>T6</td>
<td>T6</td>
</tr>
<tr>
<td>$\sigma_{0.2}$ [MPa]</td>
<td>200</td>
<td>287±6</td>
<td>240-280</td>
</tr>
<tr>
<td>UTS [MPa]</td>
<td>280</td>
<td>342±10</td>
<td>300-350</td>
</tr>
<tr>
<td>Elongation %</td>
<td>7</td>
<td>5±1</td>
<td>4-6</td>
</tr>
<tr>
<td>HB</td>
<td></td>
<td></td>
<td>100-115</td>
</tr>
<tr>
<td>Provino</td>
<td>Rm (N/mm²)</td>
<td>Rp (N/mm²)</td>
<td>A%</td>
</tr>
<tr>
<td>---------</td>
<td>------------</td>
<td>------------</td>
<td>-----</td>
</tr>
<tr>
<td>12A</td>
<td>325.76</td>
<td>288.05</td>
<td>3.13</td>
</tr>
<tr>
<td>12B</td>
<td>333.27</td>
<td>279.51</td>
<td>3.56</td>
</tr>
<tr>
<td>12C</td>
<td>355.17</td>
<td>292.8</td>
<td>5.39</td>
</tr>
<tr>
<td>12D</td>
<td>348.18</td>
<td>286.03</td>
<td>6.04</td>
</tr>
<tr>
<td>20A</td>
<td>337.94</td>
<td>287.56</td>
<td>3.47</td>
</tr>
<tr>
<td>20B</td>
<td>328.44</td>
<td>283.51</td>
<td>2.57</td>
</tr>
<tr>
<td>20C</td>
<td>350.96</td>
<td>284.19</td>
<td>7.49</td>
</tr>
<tr>
<td>20D</td>
<td>343.83</td>
<td>278.6</td>
<td>6.25</td>
</tr>
<tr>
<td>23A</td>
<td>338.05</td>
<td>290.45</td>
<td>4.35</td>
</tr>
<tr>
<td>23B</td>
<td>339.15</td>
<td>279.41</td>
<td>4.83</td>
</tr>
<tr>
<td>23C</td>
<td>350.16</td>
<td>300.75</td>
<td>5.4</td>
</tr>
<tr>
<td>23D</td>
<td>351.44</td>
<td>286.72</td>
<td>5.03</td>
</tr>
<tr>
<td>media</td>
<td>341.9</td>
<td>286.5</td>
<td>4.8</td>
</tr>
<tr>
<td>Dev.St</td>
<td>9.60</td>
<td>6.31</td>
<td>1.44</td>
</tr>
</tbody>
</table>

12th International Conference on Semi-Solid Processing of Alloys and Composites
Cape Town, 8-11 October 2012
Well developed & globular microstructures

12th International Conference on Semi-Solid Processing of Alloys and Composites
Cape Town, 8-11 October 2012
SEM and compositional analysis

Al: 52.68%
Si: 34.18%
Mg: 8.23%
Fe: 4.91%

Al: 63.25%
Si: 22.84%
Mg: 8.61%
Fe: 5.30%
Final remarks I

- An analysis of an improved rheocasting process appropriate to produce both thin and thick high performance parts in Al-based alloys with enhanced characteristics was presented.
- Such a process leads obtaining alloys in a semisolid state directly from the liquid state, by controlled cooling of the molten alloys.
- Components for structural industrial applications, as well as advanced automotive parts have been produced and analyzed.
The achieved results show a quite high level of mechanical strength for both series of components and appears very promising.

As expected, the results show the well-known differences between the two considered alloys (A356 and A357) and between the T5 and T6 heat treatments.

The attained quality is significantly high and indicates the reliability and the competitiveness of the new developed rheocasting process.

The process concept is very simple
Final remarks III

- With the safety component produced in ATS Company it had been gone over one million cycles during the fatigue test (requested max 250,000 cycles).

- It is one of the evidence that this SSM technology is excellent.

- It is important to promote this technology and to transfer to industrial scale.
Thank you!

mario.rosso@polito.it

I.Peter, G.Chiarmetta, I.Gattelli

12th International Conference on Semi-Solid Processing of Alloys and Composites
Cape Town, 8-11 October 2012